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Free vibration and buckling of pre-twisted beams exhibit interesting coupling

phenomena between compression, moments and torque and have been the subject of

extensive research due to their importance as models of wind turbines and helicopter

rotor blades. The paper investigates the influence of multiple kinds of initial stresses

straight beam based on the Timoshenko theory. The derivation begins with the three-

dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a

product of displacement gradient to derive the strain energy due to initial stresses. The

Frenet formulae in differential geometry are employed to treat the pre-twist. The strain

energy due to elasticity and the linear kinetic energy are obtained in classical sense.

From the variational principle, the governing equations and the associated natural

boundary conditions are derived. It is noted that the first mode increases together with

the pre-twisted angle but the second decreases seeming to close the first two modes

together for natural frequencies and compressions. The gaps close monotonically as the

angle of twist increases for natural frequencies and buckling compressions. However,

unlike natural frequencies and compressions, the closeness is not monotonic for

buckling shears, moments and torques.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Free vibration and buckling of pre-twisted beams [1–28] exhibit interesting coupling phenomena between
compression, moments and torque and have been the subject of extensive research due to their importance as models
of wind turbines and helicopter rotor blades. Rosard [1], Troesch et al. [2] and Diprima and Handelman [3] were about the
first few papers that investigated the natural vibration of pre-twisted beams. Subsequent applications to blade and
coupling vibration were investigated by Carnegie [4,5], Slyper [6], Anliker and Troesch [7], Dawson [8] and Lin [9]. Gupta
and Rao [10], Sisto and Chang [11], Yardimoglu and Yildirim [12] developed the finite elements to study vibration
problems of pre-twisted beams or bladings. Celep and Turham [13] included the influence of shear and rotator inertia on
the vibration of pre-twisting beams. Rosen et al. [14,15] used principal coordinates and Onipede et al. [16] and Balhaddad
and Onipede [17] studied the three dimensional behaviors. Petrov and Geradin [18] presented a nonlinear theory. Banerjee
[19,20] introduced an exact solution method of dynamic stiffness. Many works are existed to study vibration problems
of pre-twisted beams under axial loadings, including Chen and Keer [21], Lee [22], Liao and Huang [23] and Sakar and
ll rights reserved.

: +852 2788 7612.

T. Leung).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.12.002
mailto:Andrew.leung@cityu.edu.hk


ARTICLE IN PRESS

A.Y.T. Leung, J. Fan / Journal of Sound and Vibration 329 (2010) 1901–19231902
Sabuncu [24]. Some recent developments on buckling problems of pre-twisted beams can be found in [25–28]. However,
fewer references are contributed to dynamic stability problems of pre-twisted beams subject to shears, moments and
torques.

We aim at formulating the influence of multiple kinds of initial stresses due to compression, shears, moments and
torque on the natural vibration of pre-twisted straight beam based on the Timoshenko theory. The formulation
can be extended to system of many pre-twisted beams from the equilibrium and compatibility consideration. We begin
with the three-dimensional Green strain tensor. The nonlinear part of the strain tensor is expressed as a product
of displacement gradient to derive the strain energy due to initial stresses. The Frenet formulae in differential geometry
are employed to treat the pre-twist. The strain energy due to elasticity and the kinetic energy are obtained in
classical sense. From the variational principle, the governing equations and the associated natural boundary conditions are
derived.

The p-element method is a kind of method to improve the performance of finite element method by increasing the
order of the polynomial shape functions for a fixed mesh. The p-element method has been successfully applied to vibration
problems of beams and plates [29–34]. The element displacement is described by linear shape functions plus a variable
number of hierarchical functions which are forms of orthogonal Legendre polynomials or trigonometric series. The linear
shape functions are used to define the two nodal displacement of the beam and the hierarchical functions are used to
provide additional degrees of freedom to the interior of the beam element. The results can be improved by increasing the
terms of the additional functions. Only one element is needed to achieve excellent results. Since the Legendre polynomials
are proved to be convergent much faster than Fourier series when the beam is of C0 continuity [34], the Legendre
orthogonal polynomials used by Houmat [33] are chosen to solve the vibration and buckling problems of the pre-twisted
straight beam in this paper. The vibration problems of Rosen [14] and Banerjee [19,20] are taken as the first example.
The natural frequencies obtained by the p-element agree well with Rosen [14] and Banerjee’s results [20]. Secondly, to
prove the accuracy of the present theory, the results of frequency and buckling shears and compressions of a pre-twisted
rectangular cross-section beam are compared with results of ANSYS, and good agreement is found. The influence of the
pre-twist angle and rigidity ratio on the first two natural frequencies, buckling loads of the beam with rectangular cross-
sections are considered. It is interesting to note that the first natural frequency and compression modes increases together
with the angle of twist but the second decreases seeming to close the first two modes together for natural frequencies and
compressions. The gaps reduce monotonically as the angle of twist increases for natural frequencies and buckling
compressions. However, unlike natural frequencies and compression compressions, the closeness is not monotonic for
buckling shears, moments and torques.
2. Incremental strain analysis

In general three-dimensional elasticity analysis, the Green strain tensor is given by

eij ¼
1

2

quj

qxi
þ

qui

qxj
þ

quk

qxi

quk

qxj

� �
(1)

which can be written in engineering form in linear and nonlinear parts as

e¼ e0þe1 (2)

in which

e¼

e11

e22

e33

2e12

2e23

2e31

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
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8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; e1 ¼

e1
11

e1
22

e1
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2e1
12
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23

2e1
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8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; for e0
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1

2

quj

qxi
þ
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qxj

� �
; e1

ij ¼
1

2

quk

qxi

quk

qxj
(3)

However, the nonlinear part e1 can be rewritten as

e1 ¼
1

2
Hu¼

1

2

qu=qx1 0 0

0 qu=qx2 0

0 0 qu=qx3

qu=qx2 0 qu=qx3

qu=qx1 qu=qx3 0

0 qu=qx2 qu=qx1

2
6666666664

3
7777777775

qu=qx1

qu=qx2

qu=qx3

8><
>:

9>=
>; (4)
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where

uðx; y; zÞ ¼

u1

u2

u3

8><
>:

9>=
>; and u¼

qu=qx1

qu=qx2

qu=qx3

8><
>:

9>=
>;:

It is easily proved that

ðdHÞu¼HðduÞ

Therefore,

de1 ¼ 1
2 ðdHÞuþ1

2HðduÞ ¼ ðdHÞu¼HðduÞ (5)

Let the stress vector be

r¼ fs11 s22 s33 s12 s23 s31g
T (6)

then, by direct expansion,

dHTr¼ d
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0 0
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0
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3
75d

qu=qx1

qu=qx2

qu=qx3

8><
>:

9>=
>;¼ ½r�du (7)

When the initial stress vector r in Eq. (6) is sufficiently considered, a second order analysis will be completed. In the
following analysis, the non-vanishing strains and stresses are fe31 e32 e33g and fs31 s32 s33g respectively to satisfy the
Timoshenko assumption.

3. Geometry

3.1. The geometry of a general curve with a pre-twisted rate

For a general curve in space whose Cartesian coordinate vector v¼ vðzÞ is determined by the arc-length coordinate z (in
the ~e3 direction to be defined later), then, from differential geometry, the generalized curvatures p, q, and r are defined by

qv

qz
¼ v0 þKv; K¼

0 r �q

�r 0 p

q �p 0

2
64

3
75;

p

q

r

8><
>:

9>=
>;¼

k sinw
k cosw
tþm

8><
>:

9>=
>;; m¼ w0 (8)

where k and t and the curvature and tortuosity of the centerline and w is the twist of the cross-section to bring the
principal axes in alignment with the principal normal and bi-normal, and the prime on w denotes the derivation with
respect to z. If the beam is uniformly twisted when unstressed, then w¼ mz and the Frenet formulae is

p

q

r

8><
>:

9>=
>;¼

k sinmz

k cosmz

tþm

8><
>:

9>=
>; (9)

Consider a twisted straight beam when k=t=0 but ma0 whose cross-section is shown in Fig. 1. The principal axes are
along x ð~e1; ~NÞ and y ð~e2; ~BÞ respectively and ~N and ~B are the unit vectors of normal and bi-normal. Along the centerline, the
position ~rðzÞ, normal ~NðzÞ, bi-normal ~BðzÞ and tangent ~T vectors are given respectively by

~rðzÞ ¼

0

0

z

8><
>:

9>=
>;; ~NðzÞ ¼

cosmz

�sinmz

0

8><
>:

9>=
>;; ~BðzÞ ¼

sinmz

cosmz

0

8><
>:

9>=
>;; ~T ¼

0

0

1

8><
>:

9>=
>; (10)

The position vector rðx; y; zÞ or rðR; y; zÞ of a point on the plane z=constant at polar coordinates ðR; yÞ away from the
centerline is given by

r ¼ rþRð�cosyNþsinyBÞ ¼

�R cosmz cosyþR sinmz siny
R sinmz cosyþR cosmz siny

z

8><
>:

9>=
>; (11)
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Fig. 1. A pre-twisted straight beam: (a) straight beam, (b) twist rate m=0.125, (c) twist rate m=0.25, (d) perspective view of Fig. 1(c), and (e) local

coordinate system.
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In this paper, the coordinate system ðx; y; zÞ may be interchangeably used with ðx1; x2; x3Þ. In all cases, the Jacobian is equal
to one.

Consider a straight beam of length l=2p as shown in Fig. 1(a). The rate of pre-twist m of unit in rad/m is assumed to be
constant along the length. Then, the rotation angle measured from the bottom side to the top side of the beam can be
defined as the pre-twisted angle m ¼ ml. The straight beam with pre-twisted ratio m=0.125 and 0.25 are shown in Fig. 1(b)
and (c), having the corresponding pre-twisted angle m ¼ p=4 and p/2, respectively. Fig. 1(d) gives a perspective view of
Fig. 1(c) and (e) depicts the local coordinate system.

When the centerline is straight, t¼ k¼ 0, and the Frenet formulae becomes

d

dz

~e1

~e2

~e3

8><
>:

9>=
>;¼

0 m 0

�m 0 0

0 0 0

2
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3
75

~e1

~e2

~e3

8><
>:

9>=
>; or ~e 0 ¼K~e; where K¼

0 m 0

�m 0 0

0 0 0

2
64

3
75 (12)

3.2. Displacement, strain and external force

The coordinate system attached to the positive face across the centerline along the principle axes for a straight
prismatic beam is shown in Fig. 2, assuming the Timoshenko’s plane-remain plane cross-section during deformation. Axis
3 is along the centerline, axes 1 and 2 are the principal axes making 1-2-3 a right hand triad.

The displacements and rotations of a rectangular cross-section along the centerline at z are denoted by rðzÞ where

rðzÞ ¼
v

h

� �
(13)
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Fig. 2. Displacements and external forces of a straight beam.
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where

v¼

v1

v2

v3

0
B@

1
CA and h¼

y1

y2

y3

0
B@

1
CA

The Timoshenko assumptions for plane-remain-plane during deformation give

uðx; y; zÞ ¼

u1

u2

u3

8><
>:

9>=
>;¼

v1ðzÞ

v2ðzÞ

v3ðzÞ

8><
>:

9>=
>;þ

0 0 �y

0 0 x

y �x 0

2
64

3
75

y1ðzÞ

y2ðzÞ

y3ðzÞ

8><
>:

9>=
>;¼

1 0 0 0 0 �y

0 1 0 0 0 x

0 0 1 y �x 0

2
64

3
75rðzÞ (14)

The Frenet formulae for total differential with respect to z give

u;z ¼ u0 þKu¼

1 0 0 0 0 �y

0 1 0 0 0 x

0 0 1 y �x 0

2
64

3
75r0 þm

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 0 x y 0

2
64

3
75r (15)

A prime denotes local differentiation with respect to z. Also,

u;x ¼

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 �1 0

2
64

3
75rðzÞ and u;y ¼

0 0 0 0 0 �1

0 0 0 0 0 0

0 0 0 1 0 0

2
64

3
75rðzÞ (16)

The non-vanishing strain components e3i are

e¼

e31

e32

e33

8><
>:

9>=
>;¼

u3;1

u3;2

0

8><
>:

9>=
>;þ

q
qz

u1

u2

u3

8><
>:

9>=
>;¼

0 m 0 0 �1 0 1 0 0 0 0 �y

�m 0 0 1 0 0 0 1 0 0 0 x

0 0 0 mx my 0 0 0 1 y �x 0

2
64

3
75 r

r0

� �
¼ bðx; yÞ

r

r0

� �
(17)

where a comma subscript represents partial derivative and a prime denotes differential with respect to x3. For elastic
modulus matrix

Y¼

G 0 0

0 G 0

0 0 E

2
64

3
75

where G, E are the usual elastic modulus, the non-vanishing stresses s3i are given by

r¼
s31

s32

s33

8><
>:

9>=
>;¼ Ye (18)

which induce the resistance forces Qi, i¼ 1;2;3 on the positive face as shown in Fig. 2 as

Q1

Q2

Q3

8><
>:

9>=
>;¼

Z
rdx dy¼

0 mGA 0 0 �GA 0 GA 0 0

�mGA 0 0 GA 0 0 0 GA 0

0 0 0 0 0 0 0 0 EA

2
64

3
75

v

h
v0

8><
>:

9>=
>; (19)
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as well as the resistance moments Mi, i¼ 1;2;3

M1

M2

M3

8><
>:

9>=
>;¼�

Z
Rr dx dy¼

0 EI1m 0 0 0 0 EI1 0 0

�EI2m 0 0 0 0 0 0 EI2 0

0 0 0 0 0 0 0 0 GJ

2
64

3
75

h
v0

h0

8><
>:

9>=
>; (20)

where A is the cross-sectional area, I1 ¼
R

y2 dA¼
R

x2
2 dA, I2 ¼

R
x2 dA¼

R
x2

1 dA, and I0 ¼ I1þ I2, and J is the torsion constant.
Other area integrals are assumed to be zeros due to double symmetry. Without loss of generality, the effective shear area
factor k is taken as one for simplicity, because one can always simply change GA to kGA when needed as will be done in the
numerical examples later.

The initial stresses are given by

r0 ¼

s0
31

s0
32

s0
33

8><
>:

9>=
>;¼

Q1=A

Q2=A

Q3=A

8><
>:

9>=
>;�

0 0 �y

0 0 x

y �x 0

2
64

3
75

M1=I1

M2=I2

M3=J

8><
>:

9>=
>; (21)

Putting the displacement gradient in matrix form, on has

u;1
u;2
u;3

8><
>:

9>=
>;¼

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 �1 0 0 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 m 0 0 0 0 1 0 0 0 0 �y

�m 0 0 0 0 0 0 1 0 0 0 x

0 0 0 mx my 0 0 0 1 y �x 0

2
66666666666666664

3
77777777777777775

r

r0

� �
¼Uðx; yÞ

r

r0

� �
(22)
4. Energy

The steady state kinetic energy with the vibration frequency o is given by

T ¼
o2

2

Z
rrTAmr dx3 (23)

where

Am ¼

A 0 0 0 0 0

0 A 0 0 0 0

0 0 A 0 0 0

0 0 0 I1 0 0

0 0 0 0 I2 0

0 0 0 0 0 I0

2
6666666664

3
7777777775

(24)

The elastic strain energy density per unit length due to the non-vanishing initial stresses is given by Eq. (7)

Usðx3Þ ¼
1

2

Z
A

u;1
u;2
u;3

8><
>:

9>=
>;

T 0 0 s0
31I

0 0 s0
32I

s0
31I s0

32I s0
33I

2
64

3
75

u;1
u;2
u;3

8><
>:

9>=
>;dx dy

¼
1

2

r

r0

� �TZ
A

UT

0 0 s0
31I

0 0 s0
32I

s0
31I s0

32I s0
33I

2
64

3
75U dx dy

r

r0

� �
¼

1

2

r

r0

� �T

As
r

r0

� �
(25)
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where the initial stress strain energy density matrix As is obtained after integration over the cross-sectional area as

As ¼

m2Q3

0 m2Q3

0 0 0 sym

0 0 0
m2I2Q3

A
þ

2I2M3m
J

0 0 0 0
m2I1Q3

A
þ

2I1M3m
J

�mQ1 �mQ2 0 0 0 0

0 mQ3 0 0 0 �Q2 Q3

�mQ3 0 0 0 0 Q1 0 Q3

0 0 0 Q2�M2m M1m�Q1 0 0 0 Q3

0 0 0 0 I1
M3

J
þ

Q3m
A
þEm

� �
0 0 0 M1 Q3I1=A

0 0 0 �I2
M3

J
þ

Q3m
A
þEm

� �
0 0 0 0 M2 0 Q3I2=A

mM2 �mM1 0 0 0 0 �M1 �M2 0 0 0 JQ3=A

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

(26)

It is noted that the initial stresses in Eq. (26) relate to strains and displacements, hence, nonlinear displacements have been
considered here. The terms involving initial torque M3 are slightly different from those of some authors and discussions can
be found in [35–37]. The total strain energy density per unit length U0 is the sum of the strain energy density due to initial
stresses Us represented by As and Ue that due to linear strain by Ae where

Ue ¼
1

2

r

r0

� �TZ
A
bTYb dx1 dx2

r

r0

� �
¼

1

2

r

r0

� �T

Ae

r

r0

� �
(27)

where b is from Eq. (17), and

Ae ¼

m2GA

0 m2GA

0 0 0 sym

�mGA 0 0 GAþEI2m2

0 �mGA 0 0 GAþEI1m2

0 0 0 0 0 0

0 mGA 0 0 �GA 0 GA

�mGA 0 0 GA 0 0 0 GA

0 0 0 0 0 0 0 0 EA

0 0 0 0 I1Em 0 0 0 0 EI1

0 0 0 �I2Em 0 0 0 0 0 0 EI2

0 0 0 0 0 0 0 0 0 0 0 GJ

2
6666666666666666666666664

3
7777777777777777777777775

(28)

The higher order terms of m2 are not negligible and must be retained in numerical simulation. For the convenience of
numerical simulation, the non-dimensional equations are given by Eq. (29),

m ¼ ml; g ¼
GAl2

EI1
; r1 ¼

I1

Al2
; r2 ¼

I2

Al2
; r0 ¼

I0

Al2
; rJ ¼

J

Al2
;

l4
¼
o2rAl4

EI1
; q1 ¼

Q1l2

EI1
; q2 ¼

Q2l2

EI1
; q3 ¼

Q3l2

EI1
; m1 ¼

M1l

EI1
; m2 ¼

M2l

EI1
; m3 ¼

M3l

EJ
(29)
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And the non-dimensional matrices of Ae, Am and As are given in the following Eqs. (30)–(32), respectively:

ae ¼
EI1

l2

m2g

0 m2g

0 0 0 sym

�mg 0 0 gþm2r2=r1

0 �mg 0 0 gþm2

0 0 0 0 0 0

0 mg 0 0 �g 0 g

�mg 0 0 g 0 0 0 g

0 0 0 0 0 0 0 0 1=r1

0 0 0 0 m 0 0 0 0 1

0 0 0 �mr2=r1 0 0 0 0 0 0 r2=r1

0 0 0 0 0 0 0 0 0 0 0 grJ

2
66666666666666666666666664

3
77777777777777777777777775

(30)

am ¼
EI1

l2

1

1

1

r1

r2

r0

2
6666666664

3
7777777775

(31)

as ¼
EI1

l2

m2q3

0 m2q3

0 0 0 sym

0 0 0 2mm3r2=r1þm2q3r2

0 0 0 0 2mm3þm2q3r1

�mq1 �mq2 0 0 0 0

0 mq3 0 0 0 �q2 q3

�mq3 0 0 0 0 q1 0 q3

0 0 0 q2�mm2 mm1�q1 0 0 0 q3

0 0 0 0 m3þmq3r1 0 0 0 m1 q3r1

0 0 0 �m3�mq3r2 0 0 0 0 m2 0 q3r2

mm2 �mm1 0 0 0 0 �m1 �m2 0 0 0 q3rJ

2
66666666666666666666666664

3
77777777777777777777777775
(32)

5. p-elements for pre-twisted straight beams

5.1. Shape functions

The generalized nodal displacements of the pre-twisted straight beam can be obtained from Eq. (13),

qg ¼ ½v
b
1 vb

2 vb
3 yb

1 yb
2 yb

3 vt
1 vt

2 vt
3 yt

1 yt
2 yt

3�
T (33)

where the superscript ‘b’ and ‘t’ means the displacements on the bottom (negative) end and the top (positive) end of the
beam according to finite element convention. The displacement u of a beam subject to constant external forces Q1, Q2, Q3,
M1, M2 and M3 is given by

u¼Nq (34)

where N is the shape functions for the pre-twisted straight beam, q¼ ½qg

qi
�, qg is the generalized nodal displacements defined

in Eq. (33) and qi is the internal freedoms of the beams.

qi ¼ ½tv1
tv2

tv3
ty1

ty2
ty3
�T (35)
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The shape functions satisfying the displacement continuity at element interface for a pre-twisted straight beam are as
following:

NðxÞ ¼

Nv1

Nv2

Nv3

Ny1

Ny2

Ny3

2
6666666664

3
7777777775
¼

f iðxÞ 0 0 0 0 0

0 f iðxÞ 0 0 0 0

0 0 f iðxÞ 0 0 0

0 0 0 f iðxÞ 0 0

0 0 0 0 f iðxÞ 0

0 0 0 0 0 f iðxÞ

2
66666666664

3
77777777775

(36)

where f iðxÞ is the C0 polynomial series which has used by Houmat [33] giving in Appendix A, and the overbar on fi(x)
denotes that x is mapped from (�1,1) to (0,1), then x=x3/l (0oxo1) is the non-dimensional length, and l is the length of
beam, and i=1,2,y,p+2, p is the number of internal degrees of freedom.

5.2. Stiffness matrix, mass matrix and geometric matrices

The equation of the eigenvalue problem of the pre-twisted straight beams is

ðK�o2M�Q1GQ1
�Q2GQ2

�Q3GQ3
�M1GM1

�M2GM2
�M3GM3

Þq¼ 0 (37)

where Q1, Q2, Q3, M1, M2, M3 are the external forces. Then the stiffness matrix, mass matrix and geometric stiffness matrix
can be obtained as follows:

K¼
X

e

Ke; M¼
X

e

Me; G¼
X

e

Ge (38)

where

Ke
¼

1

2

Z l

0

N

dðNÞ=dx3

 !T

Ae

N

dðNÞ=dx3

 !
dx3 (39a)

Me
¼
r
2

Z l

0
NTAmN dx3 (39b)
Table 1
Convergence of natural frequencies with comparison to existing results (rad/s).

Number of polynomial terms Mode number

1 2 3 4 5

Present (p=12) (k=1) 3.4718 13.341 25.1658 56.3647 103.2249

Present (p=4) (k=1/1.2) 3.4722 13.3646 25.3361 61.5881 104.7998

Present (p=6) (k=1/1.2) 3.4718 13.3409 25.1663 56.4761 103.511

Present (p=8) (k=1/1.2) 3.4718 13.3409 25.1656 56.3649 103.2283

Present (p=10) (k=1/1.2) 3.4718 13.3409 25.1656 56.3642 103.2194

Present (p=12) (k=1/1.2) 3.4718 13.3409 25.1656 56.3642 103.2193

Banerjee [20] Timoshenko theory 3.4715 13.340 25.165 56.363 103.20

Banerjee [19] Bernoulli–Euler theory 3.4717 13.347 25.171 56.372 103.263

Rosen [14] 3.4726 13.2740 25.2700 56.3009 103.200

d

l
b

x2

x1

Fig. 3. The dimensions of the cantilevered beam.
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Ge
¼

1

2

Z l

0
FQM

N

dðNÞ=dx3

 !T

As
N

dðNÞ=dx3

 !
dx3 (39c)

where FQM represents the internal forces due to external forces Q1, Q2, Q3, M1, M2 or M3.
By non-dimension, the equation of the eigenvalue problem of the pre-twisted straight beams given in Eq. (38) becomes

ðK�l4M�q1Gq1
�q2Gq2

�q3Gq3
�m1Gm1

�m2Gm2
�m3Gm3

Þq ¼ 0 (40)

where

K
e
¼

1

2

Z 1

0

NðxÞ
d½NðxÞ�=dx

 !T

ae

NðxÞ
d½NðxÞ�=dx

 !
dx (41a)

M
e
¼

1

2

Z 1

0
NT
ðxÞamNðxÞdx (41b)

G
e
¼

1

2

Z 1

0
F QM

NðxÞ
d½NðxÞ�=dx

 !T

as
NðxÞ

d½NðxÞ�=dx

 !
dx (41c)
Table 2

Frequency l and buckling loads load parameters
ffiffiffiffiffi
q1
p

,
ffiffiffiffiffi
q2
p

,
ffiffiffiffiffi
q3
p

of a pre-twisted clamped-free beam with l=1 m, b=1/1.5 mm, d=1.5 mm, m ¼ p=2 and

compared with results of ANSYS.

Frequency and buckling loads Mode number

1 2 3 4 5 6

l 1.8961 2.6642 5.0230 6.3181 8.7722 10.0726

ANSYS 1.8964 2.6627 5.0534 6.2238 8.9357 9.9428ffiffiffiffiffi
q1
p

2.4189 4.0885 5.2092 6.1253 6.9350 7.7277

ANSYS 2.4285 4.1393 5.2589 6.1830 6.9881 7.7117ffiffiffiffiffi
q2
p

2.2489 3.5725 4.5218 5.3056 6.0416 6.7899

ANSYS 2.2389 3.5750 4.5244 5.3069 5.9910 6.6083ffiffiffiffiffi
q3
p

1.6290 2.8622 5.9021 7.1493 10.5829 11.5056

ANSYS 1.6383 2.8025 6.0927 7.0194 10.4904 11.7231

Table 3

The relative error when taking (JaI0) and (J= I0) for frequency l and buckling loads parameters
ffiffiffiffiffi
q1
p

,
ffiffiffiffiffi
q2
p

,
ffiffiffiffiffi
q3
p

,
ffiffiffiffiffiffiffi
m1
p

,
ffiffiffiffiffiffiffi
m2
p

and m3 of a pre-twisted

clamped-free beam with l=1 m, b=1/1.5 mm, d=1.5 mm, m ¼ p=2.

Frequency and buckling loads Mode number

1 2 3 4 5 6

l 0.0004 0 0 0.0001 0 0ffiffiffiffiffi
q1
p

20.4370 20.4370 20.4369 20.4369 20.4368 20.4367ffiffiffiffiffi
q2
p

20.4370 20.4370 20.4370 20.4370 20.4370 20.4369ffiffiffiffiffi
q3
p

0 0 0 0 0 0ffiffiffiffiffiffiffi
m1
p

20.4370 20.4370 20.4370 20.4370 20.4369 20.4369ffiffiffiffiffiffiffi
m2
p

20.4370 20.4370 20.4370 20.4370 20.4369 20.4369

m3 (�) 0 0 0 0 0 0

m3 (+) 0 0 0 0 0 0

Table 4
The flexural rigidity ratio r when the width d varying from 1 to 1.4 (i=1–5).

d (mm) 1 1.1 1.2 1.3 1.4

d/b 1 1.21 1.44 1.69 1.96

I0 (mm4) 0.1667 0.1697 0.1779 0.1901 0.2059

J (mm4) 0.1406 0.1382 0.1323 0.1244 0.1156

ri= I2/I1 1 1.4641 2.0736 2.8561 3.8416
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Table 5

(a) Influence of pre-twist angle m and rigidity ratio r on natural frequency l. (b) Influence of pre-twist angle m and rigidity ratio r on buckling loads
ffiffiffiffiffi
q3
p

.

(c) Influence of pre-twist angle m and rigidity ratio r on buckling loads
ffiffiffiffiffi
q1
p

. (d) Influence of pre-twist angle m and rigidity ratio r on buckling loads
ffiffiffiffiffi
q2
p

. (e)

Influence of pre-twist angle m and rigidity ratio r on buckling loads
ffiffiffiffiffiffiffi
m1
p

. (f) Influence of pre-twist angle m and rigidity ratio r on buckling loads
ffiffiffiffiffiffiffi
m2
p

. (g)

Influence of pre-twist angle m and rigidity ratio r on buckling loads m3 (�). (h) Influence of pre-twist angle m and rigidity ratio r on buckling loads m3 (+).

m Mode 1 Mode 2

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

(a)

0 1.8751 1.8751 1.8751 1.8751 1.8751 1.8751 2.0626 2.2501 2.4376 2.6251

p/4 1.8751 1.8773 1.8786 1.8795 1.8801 1.8751 2.0591 2.2412 2.4207 2.5968

p/2 1.8751 1.8834 1.8886 1.8921 1.8945 1.8751 2.0495 2.2172 2.3767 2.5262

3p/4 1.8751 1.8923 1.9035 1.9110 1.9161 1.8751 2.0360 2.1852 2.3207 2.4416

p 1.8751 1.9025 1.9207 1.9332 1.9418 1.8751 2.0217 2.1525 2.2665 2.3638

5p/4 1.8751 1.9122 1.9375 1.9550 1.9673 1.8751 2.0090 2.1246 2.2221 2.3028

3p/2 1.8751 1.9200 1.9512 1.9731 1.9887 1.8751 1.9993 2.1040 2.1903 2.2603

7p/4 1.8751 1.9255 1.9612 1.9865 2.0046 1.8751 1.9927 2.0902 2.1695 2.2329

2p 1.8751 1.9294 1.9682 1.9960 2.0160 1.8751 1.9882 2.0810 2.1557 2.2149

(b)

0 1.5708 1.5708 1.5708 1.5708 1.5708 1.5708 1.9007 2.2619 2.6546 3.0788

p/4 1.5708 1.5769 1.5807 1.5830 1.5846 1.5708 1.8889 2.2275 2.5791 2.9310

p/2 1.5708 1.5943 1.6088 1.6183 1.6246 1.5708 1.8581 2.1438 2.4144 2.6569

3p/4 1.5708 1.6192 1.6507 1.6717 1.6860 1.5708 1.8190 2.0474 2.2467 2.4125

p 1.5708 1.6461 1.6976 1.7331 1.7579 1.5708 1.7826 1.9656 2.1166 2.2370

5p/4 1.5708 1.6674 1.7364 1.7856 1.8208 1.5708 1.7573 1.9126 2.0370 2.1343

3p/2 1.5708 1.678 1.7566 1.8139 1.8555 1.5708 1.7462 1.8905 2.0055 2.0951

7p/4 1.5708 1.6817 1.7641 1.8247 1.8693 1.5708 1.7429 1.8845 1.9976 2.0861

2p 1.5708 1.6850 1.7707 1.8342 1.8812 1.5708 1.7397 1.8784 1.9891 2.0758

(c)

0 1.7177 1.794 1.8534 1.8995 1.9355 2.7448 2.8667 2.9617 3.0354 3.0928

p/4 1.7177 1.8246 1.9064 1.9688 2.0167 2.7448 2.9288 3.0709 3.1800 3.2639

p/2 1.7177 1.8926 2.0357 2.1501 2.2403 2.7448 3.0494 3.3165 3.5469 3.7426

3p/4 1.7177 1.9345 2.1279 2.2960 2.4391 2.7448 3.0626 3.3393 3.5769 3.7799

p 1.7177 1.9116 2.0760 2.2114 2.3208 2.7448 2.9868 3.1860 3.3503 3.4859

5p/4 1.7177 1.8700 1.9894 2.0815 2.1523 2.7448 2.9685 3.1593 3.3181 3.4478

3p/2 1.7177 1.8559 1.9634 2.0462 2.1098 2.7448 3.0229 3.2530 3.4385 3.5859

7p/4 1.7177 1.8666 1.9842 2.0755 2.1462 2.7448 3.0745 3.3624 3.6059 3.8063

2p 1.7177 1.8783 2.0071 2.1086 2.1877 2.7448 3.0230 3.2529 3.4380 3.5847

(d)

0 1.7177 1.9734 2.2241 2.4694 2.7096 2.7448 3.1534 3.5540 3.9460 4.3299

p/4 1.7177 1.9285 2.1146 2.2747 2.4101 2.7448 3.0666 3.3479 3.5889 3.7928

p/2 1.7177 1.8533 1.9584 2.0390 2.1009 2.7448 2.9482 3.1101 3.2370 3.3360

3p/4 1.7177 1.8198 1.8978 1.9574 2.0031 2.7448 2.9316 3.0755 3.1856 3.2700

p 1.7177 1.8371 1.9286 1.9984 2.0519 2.7448 3.0035 3.2136 3.3794 3.5087

5p/4 1.7177 1.8737 1.9968 2.0922 2.1657 2.7448 3.0404 3.3085 3.5471 3.7547

3p/2 1.7177 1.8899 2.0304 2.1423 2.2304 2.7448 2.9663 3.1416 3.2788 3.3857

7p/4 1.7177 1.8786 2.0078 2.1093 2.1885 2.7448 2.9222 3.0594 3.1654 3.2475

2p 1.7177 1.8671 1.985 2.0768 2.1478 2.7448 2.9659 3.1405 3.2768 3.3829

(e)

0 1.0747 1.2347 1.3916 1.545 1.6953 1.8615 2.1386 2.4103 2.6761 2.9364

p/4 1.0747 1.1965 1.3005 1.3872 1.4583 1.8615 2.0947 2.3051 2.4915 2.6543

p/2 1.0747 1.1456 1.1997 1.2409 1.2725 1.8615 2.0319 2.1708 2.2810 2.3672

3p/4 1.0747 1.1412 1.1921 1.2310 1.2608 1.8615 2.0152 2.1342 2.2252 2.2947

p 1.0747 1.1715 1.2483 1.3081 1.3544 1.8615 2.0339 2.1793 2.2994 2.3968

5p/4 1.0747 1.1874 1.2806 1.3555 1.4151 1.8615 2.0194 2.1536 2.2673 2.3632

3p/2 1.0747 1.1718 1.2492 1.3100 1.3573 1.8615 1.9842 2.0780 2.1494 2.2040

7p/4 1.0747 1.1615 1.2293 1.2817 1.3220 1.8615 1.9906 2.0905 2.1671 2.2259

2p 1.0747 1.1718 1.2495 1.3105 1.3582 1.8615 2.0270 2.1546 2.2514 2.3248

(f)

0 1.0747 1.1225 1.1596 1.1885 1.2110 1.8615 1.9441 2.0086 2.0585 2.0974

p/4 1.0747 1.1495 1.2071 1.2512 1.2851 1.8615 1.9754 2.0635 2.1314 2.1838

p/2 1.0747 1.2009 1.3094 1.4001 1.4744 1.8615 2.0330 2.1783 2.3020 2.4074

3p/4 1.0747 1.2071 1.3242 1.4253 1.5109 1.8615 2.0422 2.1875 2.3022 2.3923

p 1.0747 1.1715 1.2483 1.3081 1.3544 1.8615 2.0339 2.1793 2.2994 2.3968

5p/4 1.0747 1.1567 1.2201 1.2686 1.3058 1.8615 2.0499 2.2114 2.3460 2.4559

3p/2 1.0747 1.1718 1.2492 1.3100 1.3573 1.8615 2.0800 2.2679 2.4251 2.5537

7p/4 1.0747 1.1825 1.2706 1.3413 1.3971 1.8615 2.0740 2.2576 2.4130 2.5426

2p 1.0747 1.1718 1.2495 1.3105 1.3582 1.8615 2.0270 2.1546 2.2514 2.3248

(g)

0 1.5708 1.3599 1.1570 0.9836 0.8421 1.5708 1.7255 1.7867 1.7701 1.7015

p/4 1.5708 1.4483 1.2916 1.1294 0.9798 1.5708 1.6250 1.6136 1.5591 1.4797

A.Y.T. Leung, J. Fan / Journal of Sound and Vibration 329 (2010) 1901–1923 1911



ARTICLE IN PRESS

Table 5 (continued )

m Mode 1 Mode 2

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

p/2 1.5708 1.5412 1.4619 1.3491 1.2197 1.5708 1.5439 1.4789 1.3942 1.3016

3p/4 1.5708 1.4946 1.3944 1.2867 1.1807 1.5708 1.5985 1.5744 1.5110 1.4216

p 1.5708 1.4826 1.3679 1.2462 1.1287 1.5708 1.6062 1.5884 1.5329 1.4544

5p/4 1.5708 1.5037 1.3985 1.2761 1.1522 1.5708 1.5802 1.5411 1.4723 1.3877

3p/2 1.5708 1.5417 1.4651 1.3592 1.2404 1.5708 1.5436 1.4776 1.3912 1.2968

7p/4 1.5708 1.5154 1.4277 1.3259 1.2216 1.5708 1.5725 1.5240 1.4409 1.3381

2p 1.5708 1.5063 1.4086 1.2971 1.1844 1.5708 1.5805 1.5405 1.4675 1.3757

(h)

0 1.5708 1.3599 1.1570 0.9836 0.8421 1.5708 1.7255 1.7867 1.7701 1.7015

p/4 1.5708 1.3077 1.0957 0.9307 0.8014 1.5708 1.8254 1.9824 2.0162 1.9523

p/2 1.5708 1.3007 1.1019 0.9510 0.8326 1.5708 1.8927 2.1715 2.2875 2.2119

3p/4 1.5708 1.3339 1.1613 1.0277 0.9199 1.5708 1.8837 2.2593 2.5719 2.4029

p 1.5708 1.3961 1.2587 1.1457 1.0496 1.5708 1.7807 2.0018 2.1257 1.9305

5p/4 1.5708 1.4728 1.3766 1.2867 1.2031 1.5708 1.6423 1.6429 1.5483 1.3927

3p/2 1.5708 1.5385 1.4462 1.3177 1.1815 1.5708 1.5462 1.4920 1.4247 1.3516

7p/4 1.5708 1.4890 1.3736 1.2483 1.1274 1.5708 1.5963 1.5739 1.5211 1.4486

2p 1.5708 1.4847 1.3766 1.2639 1.1558 1.5708 1.6073 1.5895 1.5291 1.4383

0 0.5 1 1.5 2
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

0 0.5 1 1.5 2
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 0.5 1 1.5 2
1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2
1.5

2

2.5

3

3.5

4

4.5

πμ

Fr
eq

ue
nc

y 
�

πμ πμ πμ

Lo
ad

 (q
3)

1/
2

Lo
ad

 (q
1)

1/
2

Lo
ad

 (q
2)

1/
2

0 0.5 1 1.5 2
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

0 0.5 1 1.5 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.5

(e) (f) (g) (h)

(d)(c)(b)(a)

1 1.5 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.5 1 1.5 2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

πμ πμ πμ πμ

Lo
ad

 (m
1)

1/
2

Lo
ad

 (m
2)

1/
2

Lo
ad

 m
3 

(-
)

Lo
ad

 m
3 

(+
)

(i) r1 mode 1
r2 mode 1
r3 mode 1
r4 mode 1
r5 mode 1

r1 mode 2
r2 mode 2
r3 mode 2
r4 mode 2
r5 mode 2

Fig. 4. Natural frequencies and buckling loads under the influence of initial twist angle and flexural rigidity ratio: (a) natural frequency l, (b) buckling

loads
ffiffiffiffiffi
q3
p

, (c) buckling loads
ffiffiffiffiffi
q1
p

, (d) buckling loads
ffiffiffiffiffi
q2
p

, (e) buckling loads
ffiffiffiffiffiffiffi
m1
p

, (f) buckling loads
ffiffiffiffiffiffiffi
m2
p

, (g) buckling loads m3 (�), (h) buckling loads m3

(+), and (i) legend for Figs. 4(a–h).
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where the overbar denotes the non-dimensional matrices of Ke, Me, Ge
q1

, Ge
q2

, Ge
q3

, Ge
m1

, Ge
m2

and Ge
m3

, non-dimensional
displacement vector q, and non-dimensional internal forces FQM.

For a pre-twisted straight beam clamped on one end and free on the other end and is subject only to axial loads Q3 and/
or torque M3 on the free end, the internal forces will be constant along the length of the beam. However, when the beam is
subject to end shears Q1 or Q2 or end moments M1 or M2, since the beam is pre-twisted, the axes 1 and 2 of the current
plane has a twisted angle m~z with the free-end, therefore, the internal forces become functions of m~z. The internal forces
due to end forces Q1, Q2, M1 or M2 along the length of the beam are given in Eqs. (42a–d), respectively.

~Q 1a0; ~Q 2 ¼ 0; ~M1 ¼ 0; ~M2 ¼ 08>>>><
>>>>:

Q1 ¼
~Q 1 cosðm~zÞ

Q2 ¼�
~Q 1 sinðm~zÞ

M1 ¼
~Q 1 ~z sinðm~zÞ

M2 ¼
~Q 1 ~z cosðm~zÞ

~Q 1 ¼ 0; ~Q 2a0; ~M1 ¼ 0; ~M2 ¼ 08>>>><
>>>>:

Q1 ¼
~Q 2 sinðm~zÞ

Q2 ¼
~Q 2 cosðm~zÞ

M1 ¼�
~Q 2 ~z cosðm~zÞ

M2 ¼
~Q 2 ~z sinðm~zÞ

(42a,b)

~Q 1 ¼ 0; ~Q 2 ¼ 0; ~M1a0; ~M2 ¼ 08>>>><
>>>>:

Q1 ¼ 0

Q2 ¼ 0

M1 ¼
~M1 cosðm~zÞ

M2 ¼�
~M1 sinðm~zÞ

~Q 1 ¼ 0; ~Q 2 ¼ 0; ~M1 ¼ 0; ~M2a08>>>><
>>>>:

Q1 ¼ 0

Q2 ¼ 0

M1 ¼
~M2 sinðm~zÞ

M2 ¼
~M2 cosðm~zÞ

(42c,d)

where the curly overbar ‘� ’on Q1, Q2, M1 or M2 denotes the external forces applied on the free end of the cantilevered
straight beam and ~z ¼ l�x3 ¼ lð1�xÞ then m~z ¼ mð1�xÞ.

The coefficients of the stiffness matrix K
e
, mass matrix M

e
and geometric stiffness matrices G

e

q1
, G

e

q2
, G

e

q3
, G

e

m1
, G

e

m2
and

G
e

m3
are given in Appendix B.
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Fig. 5. The influence of the twist angle on interaction diagram of natural frequencies and buckling compressions: (a) 3D view, and (b) top view.
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6. Numerical examples

6.1. Results comparison

6.1.1. Natural frequency convergence study and compared with existed solutions

Considering a cantilevered beam has a length of l=3.048 m with a pre-twist angle m ¼ 2p=9 as the first example
[14,19,20]. The properties of the beam are: E¼ 70� 109 N=m2, G¼ 27� 109 N=m2, r¼ 2700 kg=m3, A¼ 0:0127667 m2,
EIx ¼ 2869:7 N �m2, EIy ¼ 57393 N �m2. The present frequencies o (rad/s) are compared with Rosen [14], Banerjee [19,20] in
Table 1. It is found that when taking shear effective factor as k=1/1.2, the polynomial terms p=12, the present results fit
well with Banerjee’s Timoshenko theory results. Therefore, the polynomial terms p=12 will be chosen for the study in this
paper.

6.1.2. Comparison with results of ANSYS

Consider a clamped free beam with rectangular solid section as shown in Fig. 3 having the following properties:
Young’s modulus E=200 Mpa, shear modulus G=E/2(1+v), and shear effective factor k=1, Poisson’s ratio v=0.3 and the

mass density r=7.8 kg/m3, with length l=1 m, cross-section b=1/1.5 mm and d=1.5 mm, the area A=bd=1 mm2, the second
moment of area I1=1/12db3, I2=1/12bd3, and the polar moment of area I0= I1+ I2=0.2245 mm4, when brd, the exact
expressions of the torsion constant J has been given by Conner [38], having the value of 0.1067 mm4.

To show the accuracy of the present method, the natural frequency l and buckling loads
ffiffiffiffiffi
q1
p

,
ffiffiffiffiffi
q2
p

,
ffiffiffiffiffi
q3
p

obtained by
p-element are compared with the results of ANSYS [39] (choosing 100 BEAM188 elements in ANSYS) in Table 2, and good
agreement is found. Since it is hard to apply pure bending moments or torque on beam element in ANSYS, the buckling
moments (and torque)

ffiffiffiffiffiffiffi
m1
p

,
ffiffiffiffiffiffiffi
m2
p

, and m3 obtained by p-element are not be able to compare with those of ANSYS. For a
pre-twisted beam, the value of the buckling torque obtained in the same direction with the pre-twist angle is different
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Fig. 6. The influence of the angle of twist on interaction diagram of natural frequencies and buckling torques m3 (�): (a) 3D view, and (b) top view.
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from that in the opposite direction (negative pre-twist). Then, the buckling torque in the same direction with the pre-twist
angle is defined as m3 (+) and the opposite one is m3 (�). Conventionally, torsion constant J is taken equal to polar moment
of area I0 in beam vibration and buckling analysis. Actually, when the aspect ratio d/b becomes larger for rectangular cross-
sections, the value of J has a great difference with I0. Therefore, the relative error by taken (J= I0) with (JaI0) for frequency l
and buckling load parameters

ffiffiffiffiffi
q1
p

,
ffiffiffiffiffi
q2
p

,
ffiffiffiffiffi
q3
p

,
ffiffiffiffiffiffiffi
m1
p

,
ffiffiffiffiffiffiffi
m2
p

and m3 are computed in Table 3. As shown in Table 3, the results
by taking (J= I0) have a 21 percent difference with the accurate results by taking (JaI0) for the first six modes of shear
buckling loads

ffiffiffiffiffi
q1
p

,
ffiffiffiffiffi
q2
p

and moments
ffiffiffiffiffiffiffi
m1
p

,
ffiffiffiffiffiffiffi
m2
p

, but the difference between J and I0 has very little influence on the first
six modes of axial loads

ffiffiffiffiffi
q3
p

and buckling torques m3. Therefore, in this paper we take (JaI0) for more accurate solutions.
In the presentation, we use l instead of l2 to get an even spread between modes. Similarly, we use

ffiffiffiffi
qi
p

and
ffiffiffiffiffiffi
mi
p

instead of
qi and mi.
6.2. The influence of rigidity ratio and pre-twisted angle

We are interested to find out the influence of the initial twist angle m on the static instability phenomena when the
twisted beam is subjected to different external forces. The non-dimensional parameter m is taken varying from 0 to 2p. Let
the area A=bd to be constant equal to 1 mm2 and the width d varied from 1 to 1.4 mm. And the shear effective factor is
chosen as 1/1.2 in this section. The flexural rigidity ratios defined as r= I2/I1 varied with respect to the width d are given in
Table 4. The influence of pre-twist angle m and flexural rigidity ratio r on the first two modes of natural vibration
frequencies l and buckling loads, including shear forces

ffiffiffiffiffi
q1
p

and
ffiffiffiffiffi
q2
p

, axial force
ffiffiffiffiffi
q3
p

bending moments
ffiffiffiffiffiffiffi
m1
p

,
ffiffiffiffiffiffiffi
m2
p

and
torque m3 are tabulated in Table 5a–h, respectively. Meanwhile, the first two modes of frequency and buckling loads
varying with the initial twist angle are shown graphically in Fig. 4(a–h), respectively. The solid lines and dotted lines as
shown in Fig. 4 represent the first modes and second modes of the frequency or buckling loads, respectively. The lines
which marked by ‘upward pointing triangle n’, ‘right-pointing triangle x ’, ‘left-pointing triangle v ’, ‘square &’ or ‘circle 3’
corresponding to the frequency or buckling loads of beams with rigidity ratio ri, i¼ 1;2;3;4;5, respectively. As shown in
Fig. 4(a–h), when there is no pre-twist angle, the results are compared well with existing literatures. The natural
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Fig. 7. The influence of the angle of twist on interaction diagram of natural frequencies and buckling torques m3 (+): (a) 3D view, and (b) top view.
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frequencies and/or buckling loads for rigidity ratio r1=1 (i.e. square cross-sections beams) are kept constant with the twist
angle. It is observed in Fig. 4a and b that the first modes of the frequency and axial loads are increasing with the pre-twist
angle and the rigidity ratio while the second modes decreased. As shown in Fig. 4d for

ffiffiffiffiffi
q2
p

and Fig. 4e for
ffiffiffiffiffiffiffi
m1
p

, both the
first two buckling loads are increasing with the rigidity ratio monotonically. However, the buckling loads are not
monotonically with respect to the pre-twist angle. Similar phenomenon can be found with

ffiffiffiffiffi
q1
p

in Fig. 4c and
ffiffiffiffiffiffiffi
m2
p

in
Fig. 4f. The situations for the first two buckling modes of torque m3 (�) or m3 (+) become more complicated. It is observed
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that the torques are not affected monotonically neither by the rigidity ratio nor with the twist angle as shown in Table 5g–h
and Fig. 4g–h.

6.3. Interaction of natural frequency and buckling loads

Consider the dynamic buckling of a rectangular solid section column clamped at one end and free at the other end
having the properties along the principal axes for Poisson’s ratio 0.3 and effective shear area k=1/1.2 as in Section 6.2. The
beam has a width d=1.2 mm and b=1/1.2 mm, with the rigidity ratio r¼ 1:24. The interactions of natural frequency and
buckling loads under the influence of the angle of pre-twist m i ¼ ði�1Þp=4, i¼ 1;2; . . . ;9 are considered. In this section, the
first, second and third modes of the interaction diagrams are distinguished by solid-lines, dotted-lines and dashed-lines
respectively.

6.3.1. Interaction of natural frequency and buckling compression

The interaction of natural frequency and buckling compression under the influence of the angle of twist is computed in
Figs. 5(a) and (b). Fig. 5(a) shows the variation of the dynamic buckling loads with the twist angle and Fig. 5(b) shows the
top view. The numbers of the twist angle m i ¼ ði�1Þp=4, where i varied from 1 to 9 are marked in Fig. 5b. The first two
natural frequencies for the un-twisted beam are 1.8751 and 1:8751� r1=4 ¼ 2:2501 and the first two buckling
compressions are p=2¼ 1:5708 and 1:5708� r1=2 ¼ 2:2619 as expected. It is interesting to note that the first mode
increases together with the angle of twist but the second decreases seeming to close the first two modes together. The gaps
close monotonically as the angle of twist increases for natural frequencies and buckling compressions.

6.3.2. Interaction of natural frequency and buckling torques

The interaction of natural frequency and buckling torque under the influence of the pre-twist angle is computed in
Figs. 6(a) and (b). Fig. 6(a) shows the variation of the dynamic buckling torques with the twist angle and Fig. 6(b) shows the
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top view where the twist angle is numbered. The first two natural frequencies for the un-twisted beam are 1.8751 and
2.2501 as in Section 6.3.1 and the first two buckling torques are 1.1570 and 1.7867 (comparing to 1.1570 and 1.7867 for
Euler assumption [36]) as expected. It is noted that the two frequency modes increases together with the angle of twist.
However, unlike natural frequencies and compressions, the closeness is not monotonic for buckling torque, where the gaps
are smallest near the twist angle m ¼ 3p=2. Similar phenomenon can be found for the buckling torque m3 (+) shown in
Figs. 7(a and b).
6.3.3. Interaction of natural frequency and shear buckling loads
ffiffiffiffiffi
q1
p

and moments
ffiffiffiffiffiffiffi
m2
p

Since the internal forces along the length of the pre-twist beam due to loads
ffiffiffiffiffi
q1
p

or
ffiffiffiffiffiffiffi
m2
p

are very similar, the
interaction of natural frequency and shear buckling loads

ffiffiffiffiffi
q1
p

or
ffiffiffiffiffiffiffi
m2
p

under the influence of the pre-twist angle are
considered together in this section, as shown in Figs. 8 and 9, respectively. The variation of the dynamic buckling loads
with the twist angle and the top view are shown as the previous sections. When there is no pre-twist, the straight beam
will only buckle about axis 1 under shear load

ffiffiffiffiffi
q1
p

as shown in Fig. 8 or moment
ffiffiffiffiffiffiffi
m2
p

as shown in Fig. 9. The first vibration
mode begins at the point (frequency l=1.8751, loads

ffiffiffiffiffi
q1
p

or
ffiffiffiffiffiffiffi
m2
p

=0), and ends at the buckling mode (l=0 andffiffiffiffiffi
q1
p
¼ 1:8534, or

ffiffiffiffiffiffiffi
m2
p

¼ 1:1596 (as expected in Timoshenko [40])). Since the beam will not buckle about axis 2, the second
vibration mode beginning at the point (l=2.2501,

ffiffiffiffiffi
q1
p

or
ffiffiffiffiffiffiffi
m2
p

¼ 0) is a straight line vertical to the frequency axis. When a
pre-twist angle exists, the case m ¼ p=4 (i=2) is taken as an example to compare with m ¼ 0, (i=1) as shown in Fig. 8(c). To
show the first four frequency modes, the frequency axis is extended from (0, 2.5) given in Fig. 8(b) to (0, 6) as shown in
Fig. 8(c). When m ¼ p=4 the beam will buckle about axis 1, beginning at the first frequency mode value l=1.8786, and
ending at the first buckling loads mode value

ffiffiffiffiffi
q1
p
¼ 1:9064. Meanwhile, the beam will also buckle about axis 2,

corresponding to the second frequency mode value l=2.2412 and the second buckling mode loads
ffiffiffiffiffi
q1
p
¼ 3:0709. While for

a no pre-twist beam, it is the third frequency mode l=4.6941 rather than the second mode (l=2.2501) to buckle at the
second buckling mode load

ffiffiffiffiffi
q1
p
¼ 2:9617. And as shown in Fig. 8(b), although the buckling capacity for the pre-twisted

beams is not increased monotonically with the twist angle, the buckling capacity is enhanced when compared with a no
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pre-twist beam. It is interesting to note that when m ¼ 7p=4, (i=8) i.e., the lines numbered as the 8th lines in Fig. 8(b) forffiffiffiffiffi
q1
p

or Fig. 9(b) for
ffiffiffiffiffiffiffi
m2
p

, the interaction diagrams beginning at the first frequency mode seems to end at the second
buckling mode, and the lines starting at the second frequency mode will finally buckle at the first buckling mode, a more
detail view can be seen from the lines numbered as the 8th lines given in Fig. 8(c).
6.3.4. Interaction of natural frequency and shear buckling loads
ffiffiffiffiffi
q2
p

and moments
ffiffiffiffiffiffiffi
m1
p

In this example, the interaction of natural frequency and shear buckling loads
ffiffiffiffiffi
q2
p

or
ffiffiffiffiffiffiffi
m1
p

under the influence of the
angle of twist are computed in Figs. 10 and 11, respectively. When there is no pre-twist, the beam will only buckle about
axis 2, starting at the frequency point 2.2501. While when once a pre-twist is presented, the first buckling mode of the
interaction diagram will start at frequency point 1.8751. Unlike the cases for buckling loads

ffiffiffiffiffi
q1
p

or
ffiffiffiffiffiffiffi
m2
p

, the buckling
capacity of the beam under loads

ffiffiffiffiffi
q2
p

or
ffiffiffiffiffiffiffi
m1
p

are weakened by the pre-twist angle. When m ¼ 5p=4 numbered as the 6th
lines for interaction diagram of frequency with buckling load

ffiffiffiffiffi
q2
p

or buckling moment
ffiffiffiffiffiffiffi
m1
p

as shown in Figs. 10(b) and
11(b), an avoid crossing phenomenon appears which indicates that the interaction diagram beginning at the first frequency
mode will finally buckle at the second buckling mode, and the interaction diagram starting at the second frequency mode
will end at the first buckling mode.
7. Conclusions

The influence of multiple kinds of initial stresses due to compression, shears, moments and torque on the natural
vibration of pre-twisted straight beam based on the Timoshenko theory has been formulated successfully with the use of
three-dimensional Green strain tensor. The Frenet formulae in differential geometry were employed to treat the pre-twist.
The governing equations and the associated natural boundary conditions were derived from the variational principle. It is
noted that the first two modes tend to close together as the angle of twist increases. The gaps reduce monotonically as the
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angle of twist increases. However, unlike natural frequencies and compression compressions, the closeness is not
monotonic for buckling shears, moments and torques.
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Appendix A

C0 hierarchical shape functions:

f1 ¼ ð1�xÞ=2

f2 ¼ ð1þxÞ=2

f3 ¼ ðx
2
�1Þ=2

f4 ¼ ðx
3
�xÞ=2

f5 ¼ ð5x
4
�6x2

þ1Þ=8

f6 ¼ ð7x
5
�10x3

þ3xÞ=8

f7 ¼ ð63x6
�105x4

þ45x2
�3Þ=48

f8 ¼ ð99x7
�189x5

þ105x3
�15xÞ=48

f9 ¼ ð429x8
�924x6

þ630x4
�140x2

þ5Þ=128

f10 ¼ ð715x9
�1716x7

þ1386x5
�420x3

þ35xÞ=128

f11 ¼ ð2431x10
�6435x8

þ6006x6
�2310x4

þ315x2
�7Þ=256

f12 ¼ ð4199x11
�12155x9

þ12870x7
�6006x5

þ1155x3
�63xÞ=256

f13 ¼ ð29393x12
�92378x10

þ109395x8
�60060x6

þ15015x4
�1386x2

þ21Þ=1024

f14 ¼ ð52003x13
�176358x11

þ230945x9
�145860x7

þ45045x5
�6006x3

þ231xÞ=1024

where �1oxo1. By mapping x from (�1, 1) to (0, 1), the hierarchical shape functions fiðxÞ mapped into
f iðxÞ ð0oxo1Þare used in this paper.

Appendix B

The non-zero coefficients of the stiffness matrix K
e

are:
m
 n
 K
e

m;n
6i�5
 6j�5
 A0;0
i;j � m

2
� gþA1;1

i;j � g
6i�4
 6j�5
 �A1;0
i;j � m � gþA0;1

i;j � m � g

6i�2
 6j�5
 �A0;0

i;j � m � g

6i�1
 6j�5
 �A0;1

i;j � g
6i�5
 6j�4
 A1:0
i;j � m � g�A0;1

i;j � m � g

6i�4
 6j�4
 A0;0

i;j � m
2
� gþA1;1

i;j � g
6i�2
 6j�4
 A0;1
i;j � g
6i�1
 6j�4
 �A0;0
i;j � m � g
6i�3
 6j�3
 A1;1
i;j =r1
6i�5
 6j�2
 �A0;0
i;j � m � g
6i�4
 6j�2
 A1;0
i;j � g
6i�1
 6j�2
 A0;0
i;j � ðg � r1þr2 � m2

Þ=r1þA1;1
i;j
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6i�1
 6j�2
 �A1;0
i;j � m � r2=r1þA0;1

i;j � m

6i�5
 6j�1
 �A1;0

i;j � g
6i�4
 6j�1
 �A0;0
i;j � m � g
6i�2
 6j�1
 A1;0
i;j � m�A0;1

i;j � m � r2=r1
6i�1
 6j�1
 A0;0
i;j � ðgþm

2
ÞþA1;1

i:j � r2=r1
6i
 6j
 A1;1
i;j � g � rJ
The non-zero coefficients of the mass matrix M
e

are:
m
 n
 M
e

m;n
6i�5
 6j�5
 A0;0
i;j
6i�4
 6j�4
 A0;0
i;j
6i�3
 6j�3
 A0;0
i;j
6i�2
 6j�2
 A0;0
i;j � r1
6i�1
 6j�1
 A0;0
i;j � r2
6i
 6j
 A0;0
i;j � r0
The non-zero coefficients of the geometric stiffness matrix G
e

q3
are:
m
 n
 G
e

m;n
6i�5
 6j�5
 A0;0
i;j � m

2
þA1;1

i;j
6i�4
 6j�5
 �A1;0
i;j � mþA0;1

i;j � m

6i�5
 6j�4
 A1;0

i;j � m�A0;1
i;j � m
6i�4
 6j�4
 A0;0
i;j � m

2
þA1;1

i;j
6i�3
 6j�3
 A1;1
i;j
6i�2
 6j�2
 A0;0
i;j � r2 � m2

þA1;1
i;j � r1
6i�1
 6j�2
 �A1;0
i;j � m � r2þA0;1

i;j � m � r1
6i�2
 6j�1
 A1;0
i;j � m � r1�A0;1

i;j � m � r2
6i�1
 6j�1
 A0;0
i;j � r1 � m2

þA1;1
i;j � r2
6i
 6j
 A1;1
i;j � rJ
The non-zero coefficients of the geometric stiffness matrix G
e

m3
are:
m
 n
 G
e

m;n
6i�2
 6j�2
 2A0;0
i;j � m � r2=r1
6i�1
 6j�2
 �A1;0
i;j � r2=r1þA0;1

i;j
6i�2
 6j�1
 A1;0
i;j �A0;1

i;j � r2=r1
6i�1
 6j�1
 2A0;0
i;j � m
The non-zero coefficients of the geometric stiffness matrix G
e

q1
are:
m
 n
 G
e

m;n
6i
 6j�5
 �B0;0
i;j � mþC1;0

i;j � mþD0;1
i;j �E1;1

i;j
6i
 6j�4
 D0;0
i;j � m�E1;0

i;j � mþB0;1
i;j �C1;1

i;j
6i�2
 6j�3
 �D0;1
i;j �C0;1

i;j � mþE1;1
i;j
6i�1
 6j�3
 E0;1
i;j � m�B0;1

i;j þC1;1
i;j
6i�3
 6j�2
 �D1;0
i;j �C1;0

i;j � mþE1;1
i;j
6i�3
 6j�1
 E1;0
i;j � m�B1;0

i;j þC1;1
i;j
6i�5
 6j
 �B0;0
i;j � mþD1;0

i;j þC0;1
i;j � m�E1;1

i;j
6i�4
 6j
 D0;0
i;j � mþB1;0

i;j �E0;1
i;j � m�C1;1

i;j
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The non-zero coefficients of the geometric stiffness matrix G
e

q2
are:
m
 n
 G
e

m;n
6i
 6j�5
 �D0;0
i;j � mþE1;0

i;j � m�B0;1
i;j þC1;1

i;j
6i
 6j�4
 �B0;0
i;j � mþC1;0

i;j � mþD0;1
i;j �E1;1

i;j
6i�2
 6j�3
 B0;1
i;j �E0;1

i;j � m�C1;1
i;j
6i�1
 6j�3
 �C0;1
i;j � m�D0;1

i;j þE1;1
i;j
6i�3
 6j�2
 B1;0
i;j �E1;0

i;j � m�C1;1
i;j
6i�3
 6j�1
 �C1;0
i;j � m�D1;0

i;j þE1;1
i;j
6i�5
 6j
 �D0;0
i;j � m�B1;0

i;j þE0;1
i;j � mþC1;1

i;j
6i�4
 6j
 �B0;0
i;j � mþD1;0

i;j þC0;1
i;j � m�E1;1

i;j
The non-zero coefficients of the geometric stiffness matrix G
e

m1
are:
m
 n
 G
e

m;n
6i
 6j�5
 �D1;0
i;j � m�B1;1

i;j
6i
 6j�4
 �B1;0
i;j � mþD1;1

i;j
6i�2
 6j�3
 D0;1
i;j � mþB1;1

i;j
6i�1
 6j�3
 B0;1
i;j � m�D1;1

i;j
6i�3
 6j�2
 D1;0
i;j � mþB1;1

i;j
6i�3
 6j�1
 B1;0
i;j � m�D1;1

i;j
6i�5
 6j
 �D0;1
i;j � m�B1;1

i;j
6i�4
 6j
 �B0;1
i;j � mþD1;1

i;j
The non-zero coefficients of the geometric stiffness matrix G
e

m2
are:
m
 n
 G
e

m;n
6i
 6j�5
 B1;0
i;j � m�D1;1

i;j
6i
 6j�4
 �D1;0
i;j � m�B1;1

i;j
6i�2
 6j�3
 �B0;1
i;j � mþD1;1

i;j
6i�1
 6j�3
 D0;1
i;j � mþB1;1

i;j
6i�3
 6j�2
 �B1;0
i;j � mþD1;1

i;j
6i�3
 6j�1
 D1;0
i;j � mþB1;1

i;j
6i�5
 6j
 B0;1
i;j � m�D1;1

i;j
6i�4
 6j
 �D0;1
i;j � m�B1;1

i;j
The integrals are

Aa;b
i;j ¼

Z 1

0
f
a
i � f

b
j dx

Ba;bi;j ¼

Z 1

0
cos½m � ð1�xÞ� � f

a
i � f

b
j dx

Ca;b
i;j ¼

Z 1

0
cos½m � ð1�xÞ� � ð1�xÞ � f

a
i � f

b
j dx

Da;b
i;j ¼

Z 1

0
sin½m � ð1�xÞ� � f

a
i � f

b
j dx

Ea;bi;j ¼

Z 1

0
sin½m � ð1�xÞ� � ð1�xÞ � f

a
i � f

b
j dx

where i¼ 1;2; . . . ;pþ2, j¼ 1;2; . . . ;pþ2, and the superscript a and b ða;b¼ 0;1Þ denote the order of the derivatives with
respect to x, and m; r1; r2; r0; rJ ; g are the non-dimensional parameters given in Eq. (29).
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